CS106X Handout 18
Autumn 2019 October 16", 2019

Assignment 4: ADTs and Recursion

Huge props for Keith Schwarz for devising all of these problems, and kudos to Julie Zelenski, Marty Stepp, and Jerry Cain for assisting Keith
with their construction. Special thanks to Nick Bowman and Eli Echt-Wilson for providing historical election data.

Motivation

Recursion is an extremely powerful problem-solving tool with tons of practical
applications. This assignment consists of three real-world recursion problems, each of
which is interesting in its own right. By the time you’re done, you'll have a much deeper
appreciation both for recursive problem solving and the wide range of problem domains
where recursion can be applied.

This assignment explores a lot of different concepts in recursion. The assignment, however,
intentionally leaves the gaming domain behind and asks that you apply recursion and
recursive backtracking to scientifically interesting problems that come up in practice. It
also has the lovely side effect of revisiting a good number of the containers—Set, Map,
Vector, etc.—that you learned about during the first two weeks of the quarter. tl;dr: It's
great preparation for your first midterm.

If you start typing out code without a clear sense of how your recursive solution will work,
chances are you'll end up going down the wrong path. Before you begin, try thinking about
the recursive structure of problem solution you're pursuing. Does anything fall into one of
the nice categories we’ve seen before (listing subsets, permutations, combinations, etc.)?
When using backtracking, what choices can you make at each step? Talking through these
questions before you start coding and making sure you have a good conceptual
understanding of what it is that you need to do can save you many, many hours of coding
and debugging. Note that all of your work should be placed in the
RecursionToTheRescue.cpp file, as all of the others are there for the test framework
you should rely on to exercise your code.

Due: Wednesday, October 23" at 11:59 pm'

' Note that we’ve changed the time the assignment is due to 11:59pm instead of 5:00pm. We're doing that
so students in Wednesday afternoon’s discussion sections aren’t distracted by a looming deadline. Also, you
are strongly discouraged from taking any late days on this assignment, since doing so will impede your ability
to prepare for the midterm on Thursday, October 24™ at 7:00 pm. ©



Problem 1: Doctors Without Orders

You're tasked with helping the country of Recursia build out its health care system, and
now it faces a crisis! No one has told the Recursian doctors which patients to see — they’re
Doctors without Orders! As Minister of Health, it's time to help the Recursians with their
medical needs.

Consider the following two record definitions designed to represent doctors and patients:

struct Doctor ({
string name;
int hoursFree;

}i

struct Patient {
string name;
int hoursNeeded;

}i

Each doctor has a number of hours that they're capable of working each day, and each
patient has a number of hours they need to be seen. Your task is to write a function

bool canAllPatientsBeSeen(const Vector<Doctor>& doctors,
const Vector<Patient>& patients,
Map<string, Set<string>>& schedule);

that takes as input a list of available doctors, a list of available patients, and then returns
whether it's possible to schedule all the patients so that each one is seen by some doctor
for the required amount of time. If it is possible to schedule everyone, the function should
fill in the final schedule parameter by associating each doctor’s name with the set of the
names of patients he or she can see.

For example, suppose we have these doctors and patients:

e Patient Lacks: 2 Hours Needed
e Patient Gage: 3 Hours Needed
Doctor Taussig: 8 Hours Free e Patient Molaison: 4 Hours Needed
Doctor Sacks: 8 Hours Free e Patient Writebol: 3 Hours Needed
Doctor Ofri: 8 Hours Free e Patient St. Martin: T Hour Needed
e Patient Washkansky: 6 Hours Needed
e Patient Sandoval: 8 Hours Needed
e Patient Giese: 6 Hours Needed

Doctor Thomas: 10 Hours Free

In this case, everyone can be seen:

Doctor Thomas (10 hours free) sees Patients Molaison, Gage, and Writebol (10 hours total)
Doctor Taussig (8 hours free) sees Patients Lacks and Washkansky (8 hours total)

Doctor Sacks (8 hours free) sees Patients Giese and St. Martin (7 hours total)

Doctor Ofri (8 hours free) sees Patient Sandoval (8 hours total)



However, minor changes to the patient requirements can completely invalidate the result.
If, for example, Patient Lacks needed three hours instead of just two, there wouldn’t be a
way to schedule all the patients such that all could be seen. On the other hand, if Patient
Washkansky needed seven hours instead of six, there’d still be a way to schedule everyone.
(Do you see how?)

This problem is all about recursive backtracking. Think about what decision you might
make at each point in time. How do you commit to a decision and then rewind it doesn’t
work out? As always, feel free to introduce as many helper functions as you’d like. You
may even want to make the primary function a wrapper around some other recursive
function.

Some notes on this problem:

e You can assume that schedule is empty when the function is called.

e If your function returns £alse, the final contents of schedule don’t matter (though
we suspect your code will probably leave it blank).

e Although the parameters to this function are passed by const reference, you're free
to make extra copies of the arguments or to set up whatever auxiliary data structures
you’d like in the course of solving this problem.

e You can assume no two doctors have the same name and no two patients have the
same name.

e You may find it easier to solve this problem first by simply getting the return value
right and ignoring the schedule parameter. Once you’re sure your code is always
producing the correct return value, update it so you fill in schedule. Doing so
shouldn’t require too much code, and it is much easier to add this in at the end than
it is to debug the whole thing all at once.

o If there’s a doctor who doesn’t end up seeing any patients, you can either include
the doctor’s name as a key in schedule (associated with an empty set of patients)
or leave the doctor out entirely, whichever you'd prefer.



Problem 2: Disaster Preparation

Disasters—natural and unnatural—are inevitable, and cities need to be prepared to
respond to them when they occur.

One problem: stockpiling emergency resources can be really, really expensive. As a result,
it's reasonable to have only a few cities stockpile emergency resources, with the plan that
they'd send those resources from wherever they're stockpiled to
where they're needed when an emergency happens. The challenge
with doing this is to figure out where to put resources so that (1) we
don't spend too much money stockpiling more than we need, and
(2) we don't leave any cities too far away from emergency supplies.

Imagine that you have access to a country's major highway
networks. We can imagine that there are a number of different
cities, some of which are right down the highway from others. To
the right is a fragment of the US Interstate Highway System for the
Western US. Suppose we put emergency supplies in Sacramento,
Butte, Las Vegas, Barstow, and Nogales (shown in gray). In that
case, if there's an emergency in any city, that city either already has
emergency supplies or is immediately adjacent from a city that
does. For example, any emergency in Nogales would be covered,
since Nogales already has emergency supplies. San Francisco is
covered by Sacramento, Salt Lake City is covered by both
Sacramento and Butte, and Barstow is covered both by itself and by
Las Vegas.

Although it’s possible to drive from Sacramento to San Diego, for the purposes of this
problem the emergency supplies stockpiled in Sacramento wouldn’t provide coverage to
San Diego, since they aren’t immediately next to one another.

We'll say that a country or region is disaster-ready if it has this property: that is, every city
either already has emergency supplies or is immediately down the highway from a city that
has them. Your task is to write a function

bool canBeMadeDisasterReady(const Map<string, Set<string>>& roadNetwork,
int numCities, Set<string>& locations);

that takes as input a Map representing the road network for a region (described below) and
a number of cities that can be made to hold supplies, then returns whether it's possible to
make the region disaster-ready by placing supplies in at most numCities cities. If so, the
function should then populate the argument locations with all of the cities where
supplies should be stored.



5

In this problem, the road network is represented as a map where each key is a city and
each value is a set of cities that are immediately down the highway from them. For
example, here's a small fragment of the map you'd get from the above transportation
network:

"Sacramento": {"San Francisco", "Portland", "Salt Lake City", "Los Angeles"}
"San Francisco": {"Sacramento"}
"Portland": {"Seattle", "Sacramento", "Salt Lake City"}

As in the first part of this assignment, you can assume that locations is empty when this
function is first called, and you can change it however you'd like if the function returns
false.

There are many different strategies you can use to solve this problem, and some are more
efficient than others. For example, one option would be to treat this problem as a subsets
problem, trying out each subset of cities of the given size and seeing whether any of them
would make all cities disaster ready. This option works, but it will be extremely slow on
some of the larger test cases where there are over thirty cities — so slow in fact that your
program might never give back an answer. That’s not good enough.

Here’s a better heuristic: Imagine there’s some city X in the @ e
transportation grid that’s adjacent to four neighboring cities, as shown

to the right. Any collection of cities that makes this grid disaster ready

is going to have to provide some kind of coverage to city X. Even if you a

have no idea which cities get chosen in the long run, you can say for

certain that you'll need to include at least one of A, B, C, D, or X. e e

Consider approaching the problem this way: Find a city that's

uncovered, then think of all the different ways you could cover it (either by choosing an
adjacent city or by choosing the city itself). If you can cover all the remaining cities after
making any of those choices, congrats! You're done. On the other hand, if no matter which
of these choices you commit to you find that there’s no way to cover all the cities, you
know that no solution to your particular sub-problem exists.

Some notes on this problem:

e The road network is bidirectional. If there’s a road from city A to city B, then there
will always be a road back from city B to city A in the network, and both roads will
be present in the parameter roadNetwork. You can rely on this.

e Every city appears as a key in the map, although some cities might be isolated (think
Honolulu!) If that happens, the city will be represented by a key in the map
associated with an empty set of adjacent cities.

e If you're allowed to use up to, say, k cities, but you find a way to solve the problem
using fewer than k cities, that’s fine! The set of cities you return can contain any



number of cities provided that you don’t exceed k and you properly cover
everything.

The test cases we’ve bundled with the starter code here include some simplified versions of
real transportation networks from around the world. Play around with them and let us
know if you find anything interesting. Our starter code also contains an option to use your
code to find the minimum number of cities needed to provide disaster protection in a
region, which you might find interesting to try out once you’ve gotten your code working.

Note that some of the test files that we’ve included have a lot of cities in them. The
provided test cases whose names start with VeryHard are, unsurprisingly, very hard tests
that may require some time to solve. It's okay if your program takes a long time (say, up to
two minutes) to answer queries for those maps, though if you use the strategy outlined
above you should probably be able to get solutions back for them in only a matter of
seconds.

Problem 3: Winning the Presidency

The President of the United States is not elected by a popular vote, but by a majority vote

in the Electoral College. Each state, plus DC, gets some number of electors in the Electoral
College, and the person they collectively vote in becomes President. For the purposes of

this problem, we're going to make some assumptions:

e You need to win a majority of the votes in a state to earn its electors, and you get all
the state's electors if you win the majority. For example, in a small state with only
99 people, you'd need 50 votes to win all its electors. These assumptions aren’t
entirely accurate, both because in most states a plurality suffices and some states
split their electoral votes in other ways.

e You need to win a majority of the electoral votes to become president. In the 2008
election, you'd need 270 votes because there were 538 electors. In the 1804
election, you'd need 89 votes because there were only 176 electors. (You can
technically win the presidency without winning the Electoral College, but we'll
ignore this.)

o Electors never defect. The electors in the Electoral College are free to vote for
whomever they please, but the expectation is that they'll vote for the candidate that
won their home state. As a simplifying assumption, we'll just pretend electors
always vote with the majority of their state.

This problem explores the following question: under these assumptions, what's the fewest
number of popular votes you can get and still be elected President?

Imagine that we have a list of information about each state, represented by this handy
struct definition:



struct State {

string name; // the name of the state
int electoralvVotes; // how many electors it has
int popularVotes; // the number of people in that state who voted

}i

This record contains the name of the state, its number of electors, and its voting population.
Your task is to write a function

MinInfo minPopularVoteToWin(const Vector<State>& states);

that takes as input a list of all the states that participated in the election (plus DC, if
appropriate), then returns some information about the minimum number of popular votes
you’d need in order to win the election (namely, how many votes you’d need, and which
states you’d carry in the process). The MinInfo structure is really just a pair of a minimum
popular vote total plus the list of states you’d carry in the course of reaching that total:

struct MinInfo {
int popularVotesNeeded; // how many popular votes you'd need
Vector<State> statesUsed; // the states you'd win in getting those votes

}i

To implement this function, we strongly recommend implementing a helper function that
answers the following question:

What is the minimum number of popular votes needed to get at least V electoral votes,
using only states from index i and above in the Vector?
Notice that if you solve this problem with V set to a majority of the total electoral votes and
with i = 0, then you've solved the original problem (do you see why?). We strongly
recommend making your original function a wrapper around a helper function that solves
this specific problem.

In the course of solving this problem, you might find yourself in the unfortunate situation
where, for some specific values of V and i, there’s no possible way to get V votes using
only the states from index i and forward. For example, if you're short 75 electoral votes and
only have a single state left, there’s nothing that you can do to win the election. In that
case, you may want to have this helper function return some kind of sentinel value
indicating that it’s not possible to secure that many votes. We recommend using the special
value INT_MAX, which represents the maximum possible value that you can store in an
integer. The advantage of this sentinel value is that you're already planning on finding the
strategy that requires the fewest popular votes, so if your sentinel value is greater than any
possible legal number of votes, always choosing the option that requires the minimum
number of votes will automatically pull you away from the sentinel value.

When you first implement this function, we strongly recommend testing it out using the
simplified test cases we’ve provided you in the test framework’s main menu. These test
cases use real election data, but only consider ten states out of a larger election. That
should make it easier for you to check whether your solution works on smaller examples.



Without using memoization, it's almost guaranteed that your code won’t be fast enough.
To scale this up to work with actual elections data, you'll need to work memoization into
your solution. The good news is that, if you've followed the strategy we’ve outlined above,
you should find that it’s relatively straightforward to introduce memoization into your
solution. Once you've gotten that working, try running your code on full elections data. |
think you'll be pleasantly surprised by how fast it runs!

Here are some general notes on this problem:

e The historical election data — and our reduced test cases — do not always include all
50 current US states plus DC, either because those states didn’t exist yet, or DC
didn’t have the vote, or because those states didn’t participate in the election, so
you shouldn’t assume you’ll get them as input.

e The total number of Electoral College votes to win the election depends on the
number of electors, which varies over time. Although you currently need 270
electoral votes to become President, you should not assume this in your solution.

e Remember that in all elections you need strictly more than half the votes to win. If
there are either 100 or 101 people in a state, you need 51 votes to win its electors. If
there are 538 or 539 total electoral votes, you'd need 270 electoral votes to become
president.

e You can represent the table in the memoization step in a number of different ways.
One option that isn’t mentioned in the textbook is the SparseGrid type, which
depending on your approach might be nice to know about. Check the
documentation up on the CS106X course website for more information.

Right before the 2016 election, NPR reported that 23% of the popular vote would be
sufficient to win the election, based on the 2012 voting data. They arrived at this number
by looking at states with the highest ratio of electoral votes to voting population. This was a
correction to their previously reported number of 27%, which they got by looking at what
it would take to win the states with the highest number of electoral votes. But the optimal
strategy turns out to be neither of these and instead uses a blend of small and large states.
Once you've arrived at a working solution, try running it on the data from the 2012
election. What percentage of the popular vote does your program say would be necessary
to secure the presidency??

2 The historical election data here was compiled from a number of sources. In many early elections the state
legislatures decided how to choose electors, and so in some cases we extrapolated to estimate the voting population
based on the overall US population at the time and the total fraction of votes cast. This may skew some of the earlier
election results. However, to the best of our knowledge, data from 1868 and forward is complete and accurate. Please
let us know if you find any errors in our data!



